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Scylla and Charybdis




Limitations of RCTs for Clinical Decision Making



Limitations of RCTs for Clinical Decision Making

= While RCTs can determine the better
treatment on average, they “"do not answer
the practicing doctor's question: what is the
most likely outcome when this particular drug

is given to a particular patient?”
= Austin Bradford Hill




Evidence Based Medicine

= Hill was wrong.

= RCTs should be used by doctors to o=
determine what's best for individual patients.

= "Evidence based medicineis the
conscientious, explicit, judicious and
reasonable use of current best evidence in
making decisions about the care of individual
patients.”




= EBM proposed to repurpose RCTs from tools
to establish causation into tools for prediction
in single cases.
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= What's best on average must be best for each
individual.



The Fallacy of Division
(Wennington'’s Fallacy)

Team Totals

“Michael and | combined for 57 points”
-Bill Wennington, 1995



= |tis potentially misleading to draw inferences

about individuals based on aggregated
characteristics of the (heterogeneous) group

to which they belong.
= How do we estimate “individual” treatment

effects?
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Conventional Approach: One
variable at a time subgroup analysis

= This approach relies on the detection of
“statistically significant” effect modifiers—
contrasting relative treatment effects across
levels of each subgrouping variable, one-
variable-at-a-time.




Problems With Conventional Subgroup
Analysis

= Fail to detect HTE even when its there:

= Low power
= For covariates with 50% prevalence (e.g. gender): ~4 fold the sample

size.
= For covariates with 20% prevalence (e.g. common comorbidities): ~10

fold the sample size.
= Compare Groups of patients that are more similar than

dissimilar.
= Individuals patients belong to many different

subgroups.
= Spurious False Positives




Why most subgroup effects
are false or overestimated

EXPLORATORY SUBGROUP ANALYSIS

Weak theory and noisy data
Prevalence of true effects =5%

Most positive exploratory
subgroups are false
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Kent DM, Steyerberg E, van Klaveren D. BMJ 2018 (In Press).




Why most subgroup effects
are false or overestimated

“Stronger theory”
Prevalence of true effects = 25%

ct in positive sub

Most positive confirmatory
subgroups are “true” but overestimated
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Kent DM, Steyerberg E, van Klaveren D. BMJ 2018 (In Press).




“Positive” subgroup analyses
subsequently shown to be false

Observation Refutation

Aspirin is ineffective in secondary prevention of stroke in women™ 31

Rothwell PM. Lancet 2005;365(9454):176-86.



Interim Summary

= Determining the best treatment on average
(the task of an RCT) is very different from
determining the best treatment for an
individual (the task of a good clinician).

= Conventional subgroup analysis of clinical
trials are typically inadequate and can also be
misleading, and are not consistent with the
clinically most important goal of prediction.




= The reference class problem is a model
selection problem

= The goal of Personalized EBM can be
conceived as the identification of an optimal
subgrouping scheme, based on all relevant
patient characteristics, that yields a more
individualized reference class for each patient
than the overall trial results.



Why Risk Based Subgroup
Analysis Should be Routine

David M. Kent, MD, MSc

Professor of Medicine, Neurology, Clinical and Translational Science,
Director, Predictive Analytics and Comparative Effectiveness (PACE) Center,
Institute for Clinical Research and Health Policy Studies, Tufts Medical Center



Why privilege risk-based HTE
analysis?

= Riskis a known mathematical determinant of
treatment effect.




Common Measures of Treatment
Effect

Risk Reduction| Definition
(RR)

Absolute RR
Relative RR

Odds Ratio

CER=control event rate
EER=experimental event rate
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An lllustration of Scale Dependence
of HTE over Baseline Outcome Risk

holding the RR constant
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Dahabreh, Hayward, Kent, |JE, 2016
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Why privilege risk-based HTE
analysis?

= Risk is a known mathematical determinant of
treatment effect.

= When baseline risk heterogeneity is present
(and the treatment effect is non-zero), there
is always HTE.

= Risk provides a summary measure that takes
into account multiple variables that are
relevant; provides “patient-centered”
evidence.




Figure 1: Distribution of Mortality Risk with
Thrombolytic Thearpy in Patients with Acute
Myocardial Infarction
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DANAMI-2

Risk

Number at risk

NMMI0-4 Fx 556 533 53
PA 578 546 5
PA 186 150 5 Thune JJ, et al. Circulation 2005,112:2017-2021.
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redicted Risk Distributions in RCTs
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Predicted Risk Distributions in RCTs
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Diabetes Prevention Program (DPP)
Randomized Controlled Trial

= Participants: 3060 nondiabetic persons with
evidence of impaired glucose metabolism.

= Intervention: Intervention groups received
metformin or a lifestyle-modification
program.

= Main Outcome Measure: Development of
diabetes

The DPP study was conducted by the DPP Investigators and supported by the National
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).




DPP Risk Stratified Results

p value = NS p value = 0.0008
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DPP Risk Stratified Results

Lifestyle Metformin
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Risk based analyses can reveal
counter-intuitive findings

= Overall effectiveness results may be driven by
a relatively small group of influential
(typically high risk) patients;

= The typical (median) risk patient is frequently
at considerably lower risk than the overall
average;

= The average benefit seen in the summary
result often over estimates the benefit (on
the RD scale) in most patients (and may
obscure harm in many).




METHODOLOGY Open Access
Assessing and reporting heterogeneity in
treatment effects in cllnlcal trials: a proposal

avid M Kent", Peter othwell”, John PA loannidis'?, Doug G Altman®, Rodney A I"tgj,--.-'-.-'&|'d'

\ TRIALS

1. Evaluate and report on the distribution of risk in the overall
study population and in the separate treatment arms of the
study by using a risk prediction model or index.

2. Primary subgroup analyses should include reporting how relative
and absolute risk reduction varies in a risk-stratified analysis.

3. Any additional primary subgroup analysis should be pre-
specified and limited to patient attributes with strong a prior
pathophysiological or empirical justification.

4.  Conduct and report on secondary (exploratory) subgroup
analyses separate from primary subgroup comparisons.

5. Allanalyses conducted must be reported and statistical testing
of HTE should be done using appropriate methods (such as
interaction terms) and avoiding over-interpretation.
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Risk modeling vs. Effect modeling

Annals of Internal Medicine RESEARCH AND REPORTING METHODS

The Predictive Approaches to Treatment effect Heterogeneity (PATH)
Statement: Explanation and Elaboration

Table 2. Equations Corresponding to Risk-Modeling and Effect-Modeling Approaches

Risk modeling
A multivariable regression model f that predicts the risk for an outcome based on risk predictors ; is identified or developed:
Equation 1: risk =1 (a+ B; xx; + ...+ B, x xp)
Variation in the treatment effect across risk can be tested statistically on the relative scale through the interaction between a linear predictor of risk
(Ip = By x x4 +... + B, x x,,) and treatment assignment tx:
Equation 2: risk = f(a + B X tX + By % Ip + 8, % Ip x tx)
Including a treatment interaction with the linear predictor of risk permits the relative treatment effect to vary linearly across levels of risk (and permits
testing of the statistical significance of this interaction effect, §,,).
When relative effects across risk strata seem constant, a model with a constant treatment effect may suffice:
Equation 3: risk = (o + By, x tx + By x X7 +... + By % Xp),
where the parameter ., represents a constant risk reduction on the log hazard or log odds scale for treated (tx = 1) versus control (tx = 0) patients.

Effect modeling
A regression model f is developed on RCT data with inclusion of risk predictors x;, a treatment assignment variable tx, and potential treatment interaction
terms (x; x tx):
Equation 4: risk = (o + By, x tx + By x Xq +. ..+ By X X5 + 8 x Xy XX+ ...+ 8 X X, X )

RCT = randomized controlled trial.
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JAMA | Original Investigation

Heterogeneity of Treatment Effects in an Analysis of Pooled Individual
Patient Data From Randomized Trials of Device Closure
of Patent Foramen Ovale After Stroke

David M. Kent, MO, M5; Jeffrey L. Sawver, MD; Scott E. Kasner, MD; Jason Melson, M5; John D. Carroll, MD;
Gilles Chatellier, MD; Genevieve Derumeaws, MO; Anthomy J. Furlan, MD; Howard C. Herrmanin, MD;
Peter Jini, MD; Jong 5. Kim, MD; Benjamin Koethe, M5; Fil Hyung Lee, MD; Benedicte Lefetwre, MD;
Heinrich P. Mattle, MCy; Bernhard Meier, MD; Mark Reisman, MOx; Richard W. Smalling, MD, PhD

Lars Soendergaard, MDx Jae-Kwan Song, MD; Jean-Louis Mas, MD; David E. Thaber, MD, PhD

G Editorial page 2265
IMPORTAMNCE Patent foramen ovale (PFO)-associated strokes comprise approximatehy 1054
of ischemic strokes in adults aged 18 to 60 years. While device closure decreases stroke
recurrence risk overall, the best treatment for any individual is often unclear.

BB Related article page 2312

Supplemental content

2 CME Quiz at
OBJECTIVE To evaluate heterogeneity of treatment effect of PFO closure on stroke recurrence T sza
based on previously developed scoring systems. E——Twls

up.co

DESIGN, SETTING, AMND PARTICIPANTS Investigators for the Systematic, Collaborative, PFO
Closure Evaluation (SCOPE) Consortium pooled individual patient data from all & randomized
clinical trials that compared PFO closure plus medical therapy vs medical therapy alone in
patients with PFO-associated stroke, and included a total of 3740 participants. The trials were
conducted worldwide from 2000 to 2017,

EXPOSURES PFO closure plus medical therapy vs medical therapy alone. Subgroup analyses
used the Risk of Paradoxical Embaolism (RoPE) Score (a 10-point scoring system in which
higher scores reflect younger age and the absence of vascular risk factors) and the
PFO-Associated Stroke Causal Likelihood {PASCAL) Classification System, which combines
the RoPE Score with high-risk PFO features (either an atrial septal aneurysm or a large-sized

chint) tn rlaceify natipnts into porips of calical o doecc. nlikak occib




Summary

= Heterogeneity of outcome risk is ubiquitous.

= Heterogeneity of outcome risk inevitably
gives rise to heterogeneity of treatment
effect.

= One variable at a time subgroup analyses are
inadequate (and prone to spurious false
positive results).

= Risk based subgroup analyses can do better.
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