
David M. Kent, MD, MSc
Professor of Medicine, Neurology, Clinical and Translational Science, 
Director, Predictive Analytics and Comparative Effectiveness (PACE) Center,
Institute for Clinical Research and Health Policy Studies, Tufts Medical Center



Overall trial results

One-variable-at-time 
subgroup analysis
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 While RCTs can determine the better 
treatment on average, they “do not answer 
the practicing doctor's question: what is the 
most likely outcome when this particular drug 
is given to a particular patient?”
▪ Austin Bradford Hill
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 Hill was wrong.
 RCTs should be used by doctors to 

determine what’s best for individual patients. 
 “Evidence based medicine is the 

conscientious, explicit, judicious and 
reasonable use of current best evidence in 
making decisions about the care of individual 
patients.” 
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 EBM proposed to repurpose RCTs from tools 
to establish causation into tools for prediction 
in single cases.
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 What’s best on average must be best for each 
individual.



“Michael and I combined for 57 points”
-Bill Wennington, 1995



 It is potentially misleading to draw  inferences 
about individuals based on aggregated 
characteristics of the  (heterogeneous) group 
to which they belong.

 How do we estimate “individual” treatment 
effects?



ACTUAL OUTCOME
Subject Name Without Treatment With Treatment
SAM 0
MARY 0
BOB 0
BEN 0
CHRISTINE 0
NEIL 1
MOHAMED 1
JENNIFER 1
PAUL 0
NISHA 1
MIGUEL 1
LAYLA 0
PAUL 0
EMANUEL 1
CHERYL 0
PATRICK 0
OSCAR 1
JULIANNE 0
THOMAS 0
GEORGE 0

0 = alive
1 = dead

Without 
Treatment

With 
Treatment

0 0 NO EFFECT
0 1 HARM
1 0 BENEFIT
1 1 NO EFFECT

Individual Treatment Effects in a 
Deterministic Framework: Four 
possibilities



ACTUAL OUTCOME

COUNTER FACTUAL OUTCOME

Subject Name Without Treatment With Treatment
SAM 0 1
MARY 0 0
BOB 0 0
BEN 1 0
CHRISTINE 1 0
NEIL 1 1
MOHAMED 1 1
JENNIFER 1 1
PAUL 0 1
NISHA 1 1
MIGUEL 1 1
LAYLA 1 0
PAUL 0 0
EMANUEL 1 1
CHERYL 0 0
PATRICK 0 0
OSCAR 1 1
JULIANNE 0 0
THOMAS 0 0
GEORGE 1 0

0 = alive
1 = dead

Without 
Treatment

With 
Treatment

0 0 NO EFFECT
0 1 HARM
1 0 BENEFIT
1 1 NO EFFECT

Individual Treatment Effects in a 
Deterministic Framework: Four 
possibilities



Subject Name Without Treatment With Treatment
SAM 0 1
MARY 0 0
BOB 0 0
BEN 1 0
CHRISTINE 1 0
NEIL 1 1
MOHAMED 1 1
JENNIFER 1 1
PAUL 0 1
NISHA 1 1
MIGUEL 1 1
LAYLA 1 0
PAUL 0 0
EMANUEL 1 1
CHERYL 0 0
PATRICK 0 0
OSCAR 1 1
JULIANNE 0 0
THOMAS 0 0
GEORGE 1 0

HARM

ACTUAL OUTCOME

COUNTER FACTUAL OUTCOME
HARM

BENEFIT

BENEFIT
BENEFIT

BENEFIT

0 = alive
1 = dead

Without 
Treatment

With 
Treatment

0 0 NO EFFECT
0 1 HARM
1 0 BENEFIT
1 1 NO EFFECT

Individual Treatment Effects in a 
Deterministic Framework: Four 
possibilities



0 = alive
1 = dead

Without Treatment
0
0
0
1
1
1
1
1
0
1
1
1
0
1
0
0
1
0
0
1

With Treatment
1
0
0
0
0
1
1
1
1
1
1
0
0
1
0
0
1
0
0
0

Proportion                             11/20                                                                    9/20
Dead                                       (55%)                                                                   (45%)
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 This approach relies on the detection of 
“statistically significant” effect modifiers—
contrasting relative treatment effects across 
levels of each subgrouping variable, one-
variable-at-a-time.



 Fail to detect HTE even when its there:
 Low power

▪ For covariates with 50% prevalence (e.g. gender):  ~4 fold the sample 
size.

▪ For covariates with 20% prevalence (e.g. common comorbidities): ~10 
fold the sample size.

 Compare Groups of patients that are more similar than 
dissimilar.

 Individuals patients belong to many different 
subgroups.

 Spurious False Positives 
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 Determining the best treatment on average 
(the task of an RCT) is very different from 
determining the best treatment for an 
individual (the task of a good clinician) .

 Conventional subgroup analysis of clinical 
trials are typically inadequate and can also be 
misleading, and are not consistent with the 
clinically most important goal of prediction.



 The reference class problem is a model 
selection problem

 The goal of Personalized EBM can be 
conceived as the identification of an optimal 
subgrouping scheme, based on all relevant 
patient characteristics, that yields a more 
individualized reference class for each patient 
than the overall trial results. 
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 Risk is a known mathematical determinant of 
treatment effect.



Risk Reduction 
(RR)

  Definition

Absolute RR   EER-CER
Relative RR   1 -  EER

        CER
Odds Ratio   EER/(1-EER)

  CER/(1-CER)
CER=control event rate
EER=experimental event rate



Dahabreh, Hayward, Kent, IJE, 2016



 Risk is a known mathematical determinant of 
treatment effect.

 When baseline risk heterogeneity is present 
(and the treatment effect is non-zero), there 
is always HTE.  

 Risk provides a summary measure that takes 
into account multiple variables that are 
relevant; provides “patient-centered” 
evidence.
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1.0%

16.3%
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High 
Risk

Low 
Risk







 Participants: 3060 nondiabetic persons with 
evidence of impaired glucose metabolism.

 Intervention: Intervention groups received 
metformin or a lifestyle-modification 
program.

 Main Outcome Measure: Development of 
diabetes

The DPP study was conducted by the DPP Investigators and supported by the National 
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).
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p value = 0.0008p value = NS
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 Overall effectiveness results may be driven by 
a relatively small group of influential 
(typically high risk) patients;

 The typical (median) risk patient is frequently 
at considerably lower risk than the overall 
average; 

 The average benefit seen in the summary 
result often over estimates the benefit (on 
the RD scale) in most patients (and may 
obscure harm in many). 



1. Evaluate and report on the distribution of risk in the overall 
study population and in the separate treatment arms of the 
study by using a risk prediction model or index.

2. Primary subgroup analyses should include reporting how relative 
and absolute risk reduction varies in a risk-stratified analysis.

3. Any additional primary subgroup analysis should be pre-
specified and limited to patient attributes with strong a prior 
pathophysiological or empirical justification. 

4. Conduct and report on secondary (exploratory) subgroup 
analyses separate from primary subgroup comparisons.

5. All analyses conducted must be reported and statistical testing 
of HTE should be done using appropriate methods (such as 
interaction terms) and avoiding over-interpretation.
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 Heterogeneity of outcome risk is ubiquitous.
 Heterogeneity of outcome risk inevitably 

gives rise to heterogeneity of treatment 
effect.

 One variable at a time subgroup analyses are 
inadequate (and prone to spurious false 
positive results).

 Risk based subgroup analyses can do better.
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