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Electronic Health Records and Clinical Trials

I EHRs are expected to play increasingly important roles
I To generate a list of potentially eligible patients
I To generate RWE of comparative effectiveness
I To generate evidence to support initiation of clinical trials

I Accurate EHR phenotyping is essential
I Study efficiency: representativeness of “eligible” patients
I Generalizability: high risk?
I Unbiasedness of the RWE

I Inaccuracy in EHR phenotyping needs to be addressed in
statistical analyses
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Outline of the Talk

I An anchor-variable framework for EHR-phenotyping
I Cost effective: minimum effort for chart review
I High transferability across multiple EHRs
I Part of student Lingjiao Zhang’s dissertation work

I Estimating equation apporaches to correcting bias due to
phenotyping inaccuracy

I Case contamination for EHR-based case-control studies
I Inaccuracy in cohort identification for EHR-based prospective

studies
I Part of student Lu Wang’s dissertation work

Jinbo Chen 3



EHR Phenotyping

True	patient	state

EHR	data

Phenotyping

Modeling
• Prediction
• Association	analysis
• Interpretation

Recording

Discovery

❓❓❓

I To identify eligible study subjects from EHR

I Presence or absence of ICD billing codes
I Low accuracy

I Algorithms developed using structured and
unstructured data

I Significant expert involvement
I Highly iterative process
I Time-consuming medical chart review
I Specific to phenotypes

I Need semi-automatic approach to utilizing
error-prone EHR information for research
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Typical Workflow for EHR-based Phenotyping

I Rule-based algorithms
I Iterative process based on Clinical experts’s knowledge

I Statistical classification methods
I Identification of a set of “gold standard” cases and controls
I Extraction of potential predictors from structured data: ICD-9

codes condition of interest, symptoms, comorbidities, common
treatments

I Extraction of useful information from unstructured data via
NLP

I Statitstical modeling: logistic regression, machine learning, AI..

Model valiation: PPV/NPV; Calibration largely ignored
I Available methods all required annovation of “gold standard”

cases and controls
I Anchor variable framework is an exception (Hapern et al.

2016)
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An Anchor Variable Approach to Phenotyping (Our Work
Under Review)

I Motivation: Phenotyping primary aldosteronism (PA) with
positive-only data

I Our framework: An anchor variable framework

I Our proposed statistical methods
I Maximum likelihood approach to model development

I Nonparametric methods for model validation

I Development of a preliminary model for predicting PA

I Conclusion and future work
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Motivating Example

I Primary Aldosteronism (PA)
I PA is the most common cause of secondary hypertension,

accounting for 5-10% of hypertensive patients
I PA can be cured by adrenalectomy or administration of

mineralocorticoid receptor antagonists
I PA has been seriously underdiagnosed

I To develop a phenotyping model for PA
I “Positive-only” training data for PA

I A retrospectively curated database composed of patients with
PA referred to UPHS for evaluation (Wachtel et al., 2016)

I No annotated controls

I Traditional phenotyping techniques do not apply because of
absence of labeled controls
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Objectives for Analyzing Positive-Only Data

I Develop a model for predicting phenotype presence
I Analyzing positive-only data

I Estimate phenotype prevalence
I Validate the trained classifier

I Calibration
I Predictive accuracy
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The Concept of Anchor Variable

I An anchor is a binary variable summarizing domain expertise
on patients’ phenotype statuses (Halpern et al., 2014)

I High positive predictive value (PPV)
I Anchor being positive indicates cases
I Anchor being negative is non-deterministic of the true

phenotype status

I Invariant anchor sensitivity
I Anchor-positive cases are selected completely at random from

all cases

I Example
I A pathologic diagnosis of cancer

I Upon specification of an anchor variable
I EHR = Anchor-positive cases + Unlabeled patients
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Anchor Variable

I Notation
I Y : True phenotype status (Y = 1 : case,Y = 0 : control)
I X: A vector of covariates predictive of Y , with density f (X)
I S : Anchor variable (S = 1 : presence,S = 0 : absence)
I q: Phenotype prevalence, q = p(Y = 1)
I h: Anchor prevalence, h = p(S = 1)
I (X,Y ,S): Random variables, with joint distribution p(X,Y ,S)

I High PPV
I p(Y = 1|S = 1) = 1

I Conditional independence
I p(S = 1|Y = 1,X ) = p(S = 1|Y = 1) = c
I Bayes rule: c = h/q
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Likelihood Approach

I Working model
I logit p(Y = 1|X ) = XT β

I Likelihood function

L(η, c) =
N∏
i=1

p(Xi , Si = 1)Si × p(Xi ,Si = 0)1−Si

∝
N∏
i=1

{cP(Xi ;η)}Si × {1− cP(Xi ;η)}1−Si

I (η, c) identifiable with positive-only data

I (η̂, ĉ): standard maximum likelihood estimation

I phenotype prevalence: q̂ = ĥ/ĉ, where ĥ = N−1
∑N

i=1 Si
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Model Calibration Among the Unlabeled

I Nonparametric estimate of number of cases in interval
a < p(x ; η̂) < b:

nnonpara =
nabp̂0N

−1
S=1

∑N
i=1 I{a < p(xi ; β̂) < b}I{Si = 1}

N−1
S=0

∑N
i=1 I{a < p(xi ; β̂) < b}I{Si = 0}

I nab: total number of unlabeled patients in interval
a < p(x ; β̂) < b

I NS=0: total number of unlabeled patients
I NS=1: total number of anchor-positive patients
I p̂0 = {q∗ − N−1

∑N
i=1 Si}/{1− N−1

∑N
i=1 Si}

I q∗: an educated guess of q
I Model predicted number of cases in interval a < p(x ; β̂) < b:

npara =
N∑
i=1

I{a < p(xi ; β̂) < b}I{Si = 0}(1− ĉ)p(xi ; β̂)

1− ĉp(xi ; β̂)

I Similar values of nnonpara and npara indicate good calibration
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Predictive Accuracy Measures Among the Unlabeled

I Estimation with positive-only data

T̂PRv = N−1
S=1

N∑
i=1

I{p(xi ; β̂) > v}I (Si = 1)

P̂PV v =
N−1
S=1

∑N
i=1 I{p(xi ; β̂) > v}I (Si = 1)

N−1
S=0

∑N
j=1 I{p(xj ; β̂) > v}I (Si = 0)

p̂0

F̂PRv =
N−1
S=0

∑N
j=1 I{p(xj ; β̂) > v}I (Si = 0)− p̂0N

−1
S=1

∑N
i=1 I{p(xi ; β̂) > v}I (Si = 1)

1− p̂0

N̂PV v = 1−
N−1
S=1

∑N
i=1 I{p(xi ; β̂) < v}I (Si = 1)

N−1
S=0

∑N
i=1 I{p(xj ; β̂) < v}I (Si = 0)

p̂0

ÂUC =

∫
T̂PRv dF̂PRv
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Development of a Preliminary Model for Predicting PA

I 6319 patients retrospectively extracted from UPHS EHRs
I Underwent aldosterone screening test
I Demographics, laboratory results, encounter meta data,

diagnosis codes, clinical notes

I Data transformation
I Highly skewed variables were log transformed
I Continuous variables were standardized

I Assumed missing completely at random
I Analyses were restricted to patients with complete

observations on included variables

I Anchor variables for PA
I Anchor 1: Being included in the retrospective PA research

database
I Anchor 2: Being included in the retrospective PA research

database or underwent diagnostic adrenal vein sampling
procedure
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Selection of Candidate Predictors

I Univariate analyses: logit p(S = 1|X ; θ) = XT θ

I Candidate predictors chosen by domain expert considering
both statistical and clinical significance

VARIABLE VARIABLE.DESCRIPTION
Demographics age Age when aldosterone or renin test was performed (year)

gender Gender
race Race
hisp Hispanic (Yes/No)

Pre-visit dbp Diastolic blood pressure, from office visit closest (<= 14 days) to aldosterone/renin testing
sbp Systolic blood pressure, from office visit closest (<= 14 days) to aldosterone/renin testing
time bp to 1st RAR yr Time interval (years) between first office visit with blood pressure recorded to aldosterone/renin test
time enc to 1st AVS yr Time interval (years) between first clinical encounter to aldosterone/renin test

Laboratory results aldo Serum aldosterone concentration (ng/dL)
pra Plasma renin activity (ng/mL/hr)
aldo:pra The aldosterone:renin ratio ((ng Aldosterone/dL)/(ng Angiotensin II/mL/hr))
test potassium Blood potassium concentration (mmol/L)
test sodium Blood sodium concentration (mmol/L)
test carbon dioxide Blood carbon dioxide concentration (mmol/L)

Encounter enc n Number of clinical encounters
enc bp n Number of office visits with blood pressure recorded
time bp after 1st RAR yr Time interval (years) between aldosterone/renin test and last office visit with blood pressure
time enc after 1st AVS yr Time interval (years) between aldosterone/renin test and last clinical encounter

Diagnosis codes Dx h2 E26.0 9 n Sum of the number of encounters with primary aldosteronism diagnosis codes
(255.1, 255.10, 255.11, 255.12, E26.0, E26.01, E26.02, E26.09, E26.9)

Dx h2 E26.1 8 n Sum of the number of encounters with other hyperaldosteronism diagnosis codes
(255.13, 255.14, E26.1, E26.81, E26.89)

Clinical notes re hyperaldo count of ’hyperaldo’ mentions in clinical notes
re primaryaldo count of ’primary aldo’ mentioned in the clinical notes
re bah count of ’bah’ mentioned in the clinical notes
re adrenal adenoma count of ’adrenal adenoma’ mentioned in the clinical notes
re htn count of ’hypertension’ mentioned in the clinical notes
re adrenalectomy count of ’adrenalectomy’ mentioned in the clinical notes
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Model Building

I Baseline model included demographics and variables available
at the time of PA screening

I Variables were added in sets serially until all candidate
predictors were included

Anchor 1 Anchor 2

ĉ q̂ ÂUC ĉ q̂ ÂUC
Baseline model 0.100 0.300 0.787 0.150 0.270 0.780
+ Laboratory results 0.570 0.047 0.897 0.740 0.049 0.897
+ Encounter meta data 0.640 0.054 0.919 0.770 0.058 0.914
+ Diagnosis codes 0.480 0.071 0.963 0.540 0.082 0.972
+ Clinical notes 0.450 0.076 0.990 0.560 0.079 0.990

I Backward stepwise variable selection were performed until all
included predictors had p < 0.1

Jinbo Chen 16



Results

I Estimation of anchor sensitivity c and PA prevalence q

Anchor 1 (2.8%) Anchor 2 (3.8%)

ĉ (95%CI ) 0.374 (0.282, 0.466) 0.552 (0.476, 0.634)
q̂ (95%CI ) 0.076 (0.060, 0.092) 0.070 (0.058, 0.082)

I ĉ was sensitive to anchor selection

I q̂ was consistent regardless of anchor selection
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Error in EHR-Phenotyping: An Example EHR-based Study
on Aortic Stenosis

I Study population
I 44, 191 patients having at least one echocardiogram recorded

in Penn hospital electronic echocardiogram database between
Jan 2009 and Oct 2015

I Aortic Stenosis (AS) cases identified by ICD-9 codes
I At least one AS related codes: 424.1, 395.0, 395.2, 396.0,

396.2
I Exclude those having bicuspid value disease: 746.3, 746.4
I N1 = 6, 525
I Chart-reviewed 327, 56.3% (184) had AS true cases

I AS controls identified by ICD-9 codes and NLP
I Patients not having any relevant ICD-9 codes or specific key

words in their echocardiography reports
I N0 = 37, 666
I Chart-reviewed 98, none had AS
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An Example EHR-based Study on Aortic Stenosis

I PennSEEK algorithm for identifying “Gold-standard” AS cases
(Small et al., 2018)

I Used both ICD-9 codes and clinical notes in echocardiography
reports

I N = 3, 236
I Chart-reviewed 168, 166 had AS

I Estimated odds ratio parameters for Age (continuous)
I Gold-standard cases: 1.12 (1.11, 1.12)
I Validated cases: 1.12 (1.06, 1.14)
I ICD-9 cases: 1.07 (1.07, 1.08) → biased
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Design of EHR-based Case-Control Studies

Definite	
cases

Possible	
cases No	enough	data Controls

Case	– Control	Analysis

I IDENTIFY cases and controls from EHRs

I Perform standard logistic regression analysis
I Stringent selection criteria in case identification ensures high

accuracy at the price of low sample size
I Relaxed criteria can lead to less accurate cases but larger

numbers
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Challenges for Analyzing EHR-based Case-Control Studies

I Ignoring inaccuracy in case identification can undermine
statistical inference

I Biased effect size estimates
I Decreased power

I EHR case identification error is a new analytical challenge
I True cases are contaminated by non-cases who are not controls
I EHR case-contamination is different from classical case-control

label-switching (Magder and Hughes, 1997; Meuhaus, 1999)

I Novel statistical methods are needed for addressing case
contamination

I Contaminating subjects are “non-cases”, but not controls
I Non-cases may be more similar as cases than as controls
I Desirable to honor consistency of control definition
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Our Proposed Solution

True	case

Control

Non-case

Unknown

Who	are	they?
Random	Validation	Subset

Predict	case	status	
for	those	unknown

? ?

Contaminated	Case	pool Control	pool

(100	~	400)
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Statistical Modeling

Definite	
cases

Possible	
cases No	enough	data Controls

I Notation:
I D: True phenotype status (D = 0: control; D = 1: true case;

D = 2: non-case)

I X: Covariates of interest

I Z: Predictors for discriminating true cases and non-cases

I R: Binary indicator for case validation (R = 1: yes; R = 0: no)

I Model of interest:

log
P(D = 1|X;β0,β1)

P(D = 0|X;β0,β1)
= β0 + β>1 X (1)
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Statistical Modeling in the Absence of Contamination

Fit the logistic regression model to the case-control data as if the
sampling were prospective (Prentice and Pyke, 1979)

I Estimates of β̂ = (β̂∗0 , β̂1) are obtained by solving estimating equations

N1∑
i=1

X̃iP
∗(Di = 0|Xi ; β̂)−

N0∑
j=1

X̃iP
∗(Dj = 1|Xj ; β̂) = 0,

where

P∗(D = 1 |X, β̂) = exp(β̂∗
0 + β̂

T

1 X)/{1 + exp(β̂∗
0 + β̂

T

1 X)}

I β̂1 is consistent

I The estimated intercept converges to a value different from β0

β∗
0 = β0 + log(N1/N0)− log{P(D = 1)/P(D = 0)},

N1/N0: numbers of cases/controls; P(D = 1): phenotype
prevalence
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A Novel Estimating Equation Approach

I Weight the contribution of each non-validated candidate case
by its probability of being a true case

N1∑
i=1

(
(1− Ri )E(Si |Zi )+RiSi

)
X̃iP

∗(Di = 0 |Xi ; β̂)

−
N0∑
j=1

X̃iP
∗(Dj = 1 |Xj ; β̂) = 0

I Si = 1: true case; Si = 0: non-case
I Upon a valid model for E(S |Z), we show that

I The estimating equation is unbiased
I The estimates are expected to be consistent

I E(S |Z) is unknown
I We develop a parametric model (“phenotyping model”)

using the validation data

logit Pv (Si = 1 |Zi ; τ ) = τ0 + τT
1 Zi , i = 1, . . . , n1
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The Estimating Equation Approach

I Develop Pv (S = 1 |Zi ; τ̂ ) using n1 validated candidate cases
I Estimate probability of being a true case Pv (Sj = 1 |Z; τ̂ ) for

non-validated candidate cases
I Plug Pv (S = 1 |Zj ; τ̂ ) back to the estimating equation to

obtain (β̂∗0 , β̂1)
I Large sample properties can be studied by applying standard

M-estimation theory
I Estimates (β̂∗

0 , β̂1, τ̂ ) are obtained by simutaneously solving

N1∑
i=1

(
(1− Ri )P

v (Si = 1 |Zi ; τ̂ ) + RiSi

)
X̃iP

∗(Di = 0 |Xi ; β̂)

−
N0∑
j=1

X̃iP
∗(Dj = 1 |Xj ; β̂) = 0,

and
N1∑
i=1

Ri Z̃i

{
Si − P(Si = 1 |Zi ; τ̂ )

}
= 0
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Penn EHR-based Study on Aortic Stenosis

I Candidate cases identified by ICD-9 codes (N1 = 6, 525)
I Chart-reviewed 327, 184(56.3%) had AS

I Controls identified by ICD-9 codes and NLP (N0 = 37, 666)
I Chart-reviewed 98, none had AS

I True case status for this dataset was known for all 6, 526
I 3, 236 AS cases were identified by a novel Penn algorithm
I Chart-reviewed 168, 166(98.8%) had AS

I Association model of interest
I Outcome variable: AS status (case or control)
I Covariates x: age, gender (male: reference), race (EA, AA,

other), hypertension status

I Phenotyping model
I Outcome variable: AS status (case or non-case)
I Predictors z: age, triglycerides (median value, indicator

variable for availability)
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AS Study Results

Race (AA) Race (other)

Age Gender (female) HTN
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Bias Correction To address Inaccuracy in Cohort
Identification

I Motivating example:
I Investigate the development of cardiovascular diseases (e.g.

CHD, PAD etc.) among individuals who have type II diabetes
(T2D)

I Study population: a cohort of individuals identified as having
T2D in EHRs

I Challenge:
I Cohort selected from EHRs might be mixed with those not

having T2D, resulting in bias in down stream analysis

I The estimating equation approach can be easily extended
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Thank you very much!
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