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WHY WE WANT TO USE EHRS FOR CLINICAL
RESEARCH

e Data readily available

e Often 100,000’s of Patients

e Information collected over a variety of fields
e Can study just about any clinical outcome
o Representative Population
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WHY WE MAY Not WANT TO USE EHRS FOR CLINICAL
RESEARCH

DATA ARE NOT COLLECTED FOR RESEARCH
o Data exist in disparate places
o All patients have different pieces of information
o Observational Data
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FOUR WAYS EHR DATA DIFFER FROM
TRADITIONAL CLINICAL DATA

@ We don’t have everything we want

@ Outcomes are not defined - need to phenotype data
@ Data are both longitudinal and cross-sectional

© Data not observed randomly - Informed Presence
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CHALLENGE 1:
WE DON’T HAVE EVERYTHING WE WANT

e Patients may seek care at multiple facilities
e Most social health information is not recorded or reliable

e Cannot expect death is reliably captured

o Most people don’t die in the hospital
e Preliminary work suggests EHRs have only 20% sensitivity
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ADDRESSING INCOMPLETENESS VIA DESIGN

e Define local patient population
e Live in the catchment of the health system
o Require a certain a number of primary care appointments before
eligible for study
e Contextual and proxy information can be linked in
o Neighborhood for SES
o Claims data for additional encounters
o NDI/SSDI for death
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ISSUES OF DATA DEFINITION:

CHALLENGE 2
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ISSUES OF DATA DEFINITION:
WHAT IS A DIABETIC?

ICD-9 250.x0 Expand. ICD-9

ICD-9 & 250.x2 (249.xx, 357.2, Abnormal Diabetes

250.xx type I) 362.0x, 366.41) HbA1c OGTT Meds
1CD-9 250.xx X
CMS CCW X* X*
NYC A1c Registry X
Meds X
DDC X X X X X X
SUPREME-DM X* X X X X X
eMERGE X* X X X

* Distinction between Inpatient and Outpatient Visits
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Sensitivity (TPF)

DEFINITION DIFFERENCES

Authoritative

Diabetes Validation Results faceted by Endpoint
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IMPACT OF POORER DEFINITIONS

Bias in Odds Ratio

Specificity
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CHALLENGE 3:
DATA ARE BOTH LONGITUDINAL AND CROSS-SECTIONAL

e EHR Data consist of cross-section of longitudinal data
o Most data are stored in datamarts that cover fixed periods of time

e Need to use methods for longitudinal data to model updating
exposures

o We most often use time-varying Cox Models
o Most analyses don’t account for a patient’s trajectory - just most
recent value

@ Since data are a cross-section no notion of time 0

o Define “burn-in” periods to define eligibility
e Use “burn-out” periods to define censoring

11/32



CHALLENGE 4
DATA ARE INFORMATIVELY OBSERVED: INFORMED
PRESENCE

e Collection of biases due to the fact that patients do not interact
randomly with a health system

e Focus on what data are observed as opposed to what are
missing
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THREE TYPES OF INFORMED PRESENCE

@ We know more about sicker patients
@ Where a patient seeks care is informative
© Health status driving encounters
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INFORMED PRESENCE I:
NEED TO ACCOUNT FOR NUMBER OF ENCOUNTERS

Regression of Depression on Weight Loss

Odds Ratio Alog(OR) A OR
Minimally Adjusted 3.98 (3.81, 4.17) —
+ No. Encounters  2.37 (2.26, 2.50) -0.52 -1.61
+ Comorbidities 2.82 (2.69, 2.96) -0.35 -1.16
+ No. Encounters & Comorb  2.30 (2.18, 2.42) -0.55 -1.68
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NUMBER OF ENCOUNTERS POTENTIAL CONFOUNDER
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NEED TO ACCOUNT FOR NUMBER OF ENCOUNTERS

Median Number of Encounters
Sensitivity  Without Condition  With Condition
Depression 56.3% 6 38
Weight Loss 9.3% 7 45
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NUMBER OF ENCOUNTERS POTENTIAL CONFOUNDER
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WHERE A PERSON SEEKS CARE IS INFORMATIVE
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WHERE A PERSON SEEKS CARE IS INFORMATIVE

Mean Hemoglobin A1C
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LOCATION IMPACTS INFERENCE

e Hazard Ratio for HgB A1C for time to Myocardial Infarction

Type | Hazard Ratio | P-value
Unadjusted 1.06 (1.01,1.11) | 0.026
Adjusted for Location | 0.97 (0.92,1.02) | 0.178
OP Only 1.07 (1.00, 1.14) | 0.044
ED Only 0.94 (0.89, 0.99) | 0.022

@ Interaction between A1C and location
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WHICH HOSPITAL A PATIENT USES IS INFORMATIVE
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FACILITY IMPACTS INFERENCE

e Odds Ratio for Cancer Status on Diabetes

Location | Odds Ratio | 95% ClI

All Facilities 1.69 (1.36, 2.10)
DUMC Only 1.46 (1.15,1.87)
DRH Only 0.89 (0.63, 1.26)
LCHC Only 1.08 (0.74, 1.56)
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REFERRAL HOSPITALS ARE AN Admixed POPULATION
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ADMIXTURE BIAS

e Comparison of Local and Referral Patients at Cardiac
Catheterization Lab

Local Patients \ Referral Patients
Older Younger
More Comorbidities More severe valve disease

Disease due to ageing | Disease due systematic factors
Better outcomes More follow-up procedures
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INFORMED PRESENCE III:
HEALTH STATUS DRIVING ENCOUNTERS

Dacr
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IMPACT OF INFORMATIVE VISIT PROCESS ON BIAS
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NEED AN UNDERLYING ASSOCIATION TO INDUCE BIAS
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ACCOUNTING FOR NUMBER OF ENCOUNTERS ATTENUATES BIAS
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TAKE HOME

e Most analytic challenges arise based on how individuals seek
care

e Need to be mindful of what may not be observed in EHR data
e Many challenges are controllable via the study & cohort design
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Collaborative Clinical Research
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